AFS-3 Programmer’s Reference:
Volume Server/ Volume Location Server
Interface

Edward R. Zayas

Transarc Corporation

Version 1.0 of 29 August 1991 14:48
(©Copyright 1991 Transarc Corporation
All Rights Reserved
FS-00-D165

AFS-3 Vol/VL Server Spec

Contents

1 Overview e 1
1.1 Imtroduction 1
1.2 Volumes 1

1.2.1 Definition 1
1.2.2 Volume Naming L. 2
1.2.3 Volume Types 2
1.3 Scope 3
1.4 Document Layout L 3

2 Volume Location Server Architecture 4
2.1 Imtroduction 4
2.2 The Need For Volume Location 4
23 The VLDB 5

23.1 Layout 5)
2.3.2 Database Replication 6
2.4 The viserver Process 6

3 Volume Location Server Interface 8
3.1 Imtroduction 8
3.2 Constants 9

3.2.1 Configuration and Boundary Quantities 9
3.22 Update Entry Bits oo 10
3.2.3 List-By-Attribute Bits 11
3.2.4 Volume Type Indices, 11
3.2.5 States for struct vlentry 12
3.2.6 States for struct vldbentry 12
3.2.7 ReleaseType Argument Values 13
3.2.8 Miscellaneous 13
3.3 Structures and Typedefs 14
3.3.1 struct vldbentry. 14
3.3.2 struct vlentry L 15
3.3.3 struct vital_vlheader 16

Table of Contents i August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.3.4 struct vlheader 16
3.3.0 struct VldbUpdateEntry. 17
3.3.6 struct VldbListByAttributes 17
3.3.7 struct singlevldbentry 18
3.3.8 struct vldb_list 18
3.3.9 struct vldstats 18
3.3.10 bulk.o 19
3.3.11 bulkentries 19
3.3.12 v1dblist 20
3.3.13 wvlheader 20
3.3.14 vlentry. 20

34 Error Codes. 21
3.5 Macros 22
3.5.1 COUNT-REQ() 22
3.5.2 COUNT-ABO() 22
3.5.3 DOFFSET() 22

3.6 Functions 23
3.6.1 VL. CreateEntry 24
3.6.2 VL. DeleteEntry 25
3.6.3 VL GetEntryByID oo 26
3.6.4 VL_GetEntryByName 27
3.6.5 VL_GetNewVolumeld 28
3.6.6 VL_ReplaceEntry o000 29
3.6.7 VL.UpdateEntry 30
3.6.8 VL_SetLock 31
3.6.9 VL_ReleaseLock, 32
3.6.10 VL _ListEntry 33
3.6.11 VL_ListAttributes 34
3.6.12 VL_LinkedList 35
3.6.13 VL_GetStats 36
3.6.14 VL_Probe 37

3.7 Kernel Interface Subset L. 38
4 Volume Server Architecture 39
4.1 Introductiono 39
4.2 Disk Representation 39
4.3 Transactions 40
4.4 The volserver Process e 41
4.5 LogkFile 42
5 Volume Server Interface 44
5.1 Introductiono 44

Table of Contents i August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.2

5.3
5.4

5.5

5.6

5.7

Constants 44
5.2.1 Configuration and Boundary Values 45
5.2.2 Interface Routine Opcodes 45
5.2.3 Transaction Flags 46

5231 vflags 46

5232 iflags 47

5233 tlags 47
5.2.4 Volume Types 47
52.5 LWP State 48
5.2.6 States for struct vldbentry 48
5.2.7 Validity Checks 48
5.2.8 Miscellaneous 49
Exported Variables 50
Structures and Typedefso 0oL o1
5.4.1 struct volser_trans i 51
5.4.2 struct volDescription 52
5.4.3 struct partlList 52
5.4.4 struct volser_status 53
5.4.5 struct destServer 54
5.4.6 struct volintInfo 54
5.4.7 struct tramsDebugInfo 5h)
0.4.8 struct pIDs 56
5.4.9 struct diskPartition 56
5.4.10 struct restoreCookie 57
5.4.11 transDebugEntries o7
5.4.12 wvolEntries. e 58
Error Codes 59
5.50.1 Standard 59
5.5.2 Low-Level 60
Macros 61
5.6.1 THOLD(). e 61
5.6.2 ISNAMEVALID() 61
Functions 62
5.7.1 AFSVolCreateVolume 64
5.7.2 AFSVolDeleteVolume 66
5.7.3 AFSVoIlNukeVolume 67
574 AFSVolDump 68
5.7.5 AFSVolSignalRestore 69
576 AFSVolRestore 70
577 AFSVolForward 71
578 AFSVolClone 72

Table of Contents iii August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

5.7.9 AFSVolReClone 73
5.7.10 AFSVolSetForwarding 74
5.7.11 AFSVolTransCreate 75
5.7.12 AFSVolEndTrans 76
5.7.13 AFSVolGetFlags 7
5.7.14 AFSVolSetFlags 78
5.7.15 AFSVolGetName 79
5.7.16 AFSVolGetStatus 80
5.7.17 AFSVolSetldsTypes 81
5.7.18 AFSVolSetDate]2
5.7.19 AFSVolListPartitions 83
5.7.20 AFSVolPartitionInfo 84
5.7.21 AFSVolListVolumes 85
5.7.22 AFSVolListOneVolume 86
5.7.23 AFSVolGetNthVolume 87
5.7.24 AFSVolMonitor 88
... i

Table of Contents iv August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Chapter 1

Overview

1.1 Introduction

This document describes the architecture and interfaces for two of the important agents
of the AFS distributed file system, the Volume Server and the Volume Location Server.
The Volume Server allows operations affecting entire AFS volumes to be executed, while
the Volume Location Server provides a lookup service for volumes, identifying the server
or set of servers on which volume instances reside.

1.2 Volumes

1.2.1 Definition

The underlying concept manipulated by the two AF'S servers examined by this document
is the volume. Volumes are the basic mechanism for organizing the data stored within
the file system. They provide the foundation for addressing, storing, and accessing file
data, along with serving as the administrative units for replication, backup, quotas, and
data motion between File Servers.

Specifically, a volume is a container for a hierarchy of files, a connected file system
subtree. In this respect, a volume is much like a traditional UNIX file system partition.
Like a partition, a volume can be mounted in the sense that the root directory of the
volume can be named within another volume at an AFS mount point. The entire file
system hierarchy is built up in this manner, using mount points to glue together the

Overview 1 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

individual subtrees resident within each volume. The root of this hierarchy is then
mounted by each AFS client machine using a conventional UNIX mount point within the
workstation’s local file system. By convention, this entryway into the AFS domain is
mounted on the /afs local directory. From a user’s point of view, there is only a single
mount point to the system; the internal mount points are generally transparent.

1.2.2 Volume Naming

There are two methods by which volumes may be named. The first is via a human-
readable string name, and the second is via a 32-bit numerical identifier. Volume iden-
tifiers, whether string or numerical, must be unique within any given cell. AFS mount
points may use either representation to specify the volume whose root directory is to be
accessed at the given position. Internally, however, AFS agents use the numerical form
of identification exclusively, having to translate names to the corresponding 32-bit value.

1.2.3 Volume Types

There are three basic volume types: read-write, read-only, and backup volumes.

e Read-write: The data in this volume may be both read and written by those
clients authorized to do so.

e Read-only: It is possible to create one or more read-only snapshots of read-write
volumes. The read-write volume serving as the source image is referred to as the
parent volume. Each read-only clone, or child, instance must reside on a different
UNIX disk partition than the other clones. Every clone instance generated from
the same parent read-write volume has the identical volume name and numerical
volume ID. This is the reason why no two clones may appear on the same disk
partition, as there would be no way to differentiate the two. AFS clients are
allowed to read files and directories from read-only volumes, but cannot overwrite
them individually. However, it is possible to make changes to the read-write parent
and then release the contents of the entire volume to all the read-only replicas. The
release operation fails if it does not reach the appropriate replication sites.

e Backup: A backup volume is a special instance of a read-only volume. While it is
also a read-only snapshot of a given read-write volume, only one instance is allowed
to exist at any one time. Also, the backup volume must reside on the same partition
as the parent read-write volume from which it was created. It is from a backup
volume that the AFS backup system writes file system data to tape. In addition,

Overview 2 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

backup volumes may be mounted into the file tree just like the other volume types.
In fact, by convention, the backup volume for each user’s home directory subtree
is typically mounted as OldFiles in that directory. If a user accidentally deletes a
file that resides in the backup snapshot, the user may simply copy it out of the
backup directly without the assistance of a system administrator, or any kind of
tape restore operation.

Backup volume are implemented in a copy-on-write fashion. Thus, backup volumes
may be envisioned as consisting of a set of pointers to the true data objects in the
base read-write volume when they are first created. When a file is overwritten
in the read-write version for the first time after the backup volume was created,
the original data is physically written to the backup volume, breaking the copy-
on-write link. With this mechanism, backup volumes maintain the image of the
read-write volume at the time the snapshot was taken using the minimum amount
of additional disk space.

1.3 Scope

This paper is a member of a documentation suite providing specifications of the operation
and interfaces offered by the various AFS servers and agents. The scope of this work is
to provide readers with a sufficiently detailed description of the Volume Location Server
and the Volume Server so that they may construct client applications which call their
RPC interface routines.

1.4 Document Layout

After this introductory portion of the document, Chapters 2 and 3 examine the archi-
tecture and RPC interface of the Volume Location Server and its replicated database.
Similarly, Chapters 4 and 5 describe the architecture and RPC interface of the Volume
Server.

Overview 3 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Chapter 2

Volume Location Server Architecture

2.1 Introduction

The Volume Location Server allows AFS agents to query the location and basic status of
volumes resident within the given cell. Volume Location Server functions may be invoked
directly from authorized users via the vos utility.

This chapter briefly discusses various aspects of the Volume Location Server’s architec-
ture. First, the need for volume location is examined, and the specific parties that call
the Volume Location Server interface routines are identified. Then, the database main-
tained to provide volume location service, the Volume Location Database (VLDB), is
examined. Finally, the vlserver process which implements the Volume Location Server is
considered.

As with all AFS servers, the Volume Location Server uses the Rz remote procedure call
package for communication with its clients.

2.2 The Need For Volume Location

The Cache Manager agent is the primary consumer of AFS volume location service, on
which it is critically dependent for its own operation. The Cache Manager needs to map
volume names or numerical identifiers to the set of File Servers on which its instances
reside in order to satisfy the file system requests it is processing on behalf of it clients.
Each time a Cache Manager encounters a mount point for which it does not have location
information cached, it must acquire this information before the pathname resolution may

Volume Location Server Architecture 4 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

be successfully completed. Once the File Server set is known for a particular volume, the
Cache Manager may then select the proper site among them (e.g. choosing the single
home for a read-write volume, or randomly selecting a site from a read-only volume’s
replication set) and begin addressing its file manipulation operations to that specific
server.

While the Cache Manager consults the volume location service, it is not capable of
changing the location of volumes and hence modifying the information contained therein.
This capability to perform acts which change volume location is concentrated within the
Volume Server. The Volume Server process running on each server machine manages all
volume operations affecting that platform, including creations, deletions, and movements
between servers. It must update the volume location database every time it performs
one of these actions.

None of the other AFS system agents has a need to access the volume location database
for its site. Surprisingly, this also applies to the File Server process. It is only aware of
the specific set of volumes that reside on the set of physical disks directly attached to the
machine on which they execute. It has no knowlege of the universe of volumes resident
on other servers, either within its own cell or in foreign cells.

2.3 The VLDB

The Volume Location Database (VLDB) is used to allow AFS application programs to
discover the location of any volume within its cell, along with select information about
the nature and state of that volume. It is organized in a very straightforward fashion,
and uses the ubik [4] [5] facility to to provide replication across multiple server sites.

2.3.1 Layout

The VLDB itself is a very simple structure, and synchronized copies may be maintained
at two or more sites. Basically, each copy consists of header information, followed by
a linear (yet unbounded) array of entries. There are several associated hash tables
used to perform lookups into the VLDB. The first hash table looks up volume location
information based on the volume’s name. There are three other hash tables used for
lookup, based on volume ID/type pairs, one for each possible volume type.

The VLDB for a large site may grow to contain tens of thousands of entries, so some at-
tempts were made to make each entry as small as possible. For example, server addresses
within VLDB entries are represented as single-byte indicies into a table containing the

Volume Location Server Architecture 5 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

full longword IP addresses.

A free list is kept for deleted VLDB entries. The VLDB will not grow unless all the
entries on the free list have been exhausted, keeping it as compact as possible.

2.3.2 Database Replication

The VLDB, along with other important AFS databases, may be replicated to multiple
sites to improve its availability. The ubik replication package is used to implement this
functionality for the VLDB. A full description of ubik and of the quorum completion
algorithm it implements may be found in [4] and [5]. The basic abstraction provided
by wubik is that of a disk file replicated to multiple server locations. One machine is
considered to be the synchronization site, handling all write operations on the database
file. Read operations may be directed to any of the active members of the quorum, namely
a subset of the replication sites large enough to insure integrity across such failures as
individual server crashes and network partitions. All of the quorum members participate
in regular elections to determine the current synchronization site. The ubik algorithms
allow server machines to enter and exit the quorum in an orderly and consistent fashion.
All operations to one of these replicated “abstract files” are performed as part of a
transaction. If all the related operations performed under a transaction are successful,
then the transaction is committed, and the changes are made permanent. Otherwise, the
transaction is aborted, and all of the operations for that transaction are undone.

2.4 The viserver Process

The user-space viserver process is in charge of providing volume location service for AFS
clients. This program maintains the VLDB replica at its particular server, and cooperates
with all other viserver processes running in the given cell to propagate updates to the
database. It implements the RPC interface defined in the vldbint.zg definition file for the
rrzgen RPC stub generator program. As part of its startup sequence, it must discover
the VLDB version it has on its local disk, move to join the quorum of replication sites
for the VLDB, and get the latest version if the one it came up with was out of date.
Eventually, it will synchronize with the other VLDB replication sites, and it will begin
accepting calls.

The viserver program uses at most three Rz worker threads to listen for incoming Volume
Location Server calls. It has a single, optional command line argument. If the string
“-noauth” appears when the program is invoked, then wviserver will run in an unau-
thenticated mode where any individual is considered authorized to perform any VLDB

Volume Location Server Architecture 6 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

operation. This mode is necessary when first bootstrapping an AFS installation.

Volume Location Server Architecture 7 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Chapter 3

Volume Location Server Interface

3.1 Introduction

This chapter documents the API for the Volume Location Server facility, as defined by
the vldbint.xg Rzgen interface file and the vldbint.h include file. Descriptions of all
the constants, structures, macros, and interface functions available to the application
programmer appear here.

It is expected that Volume Location Server client programs run in user space, as does the
associated vos volume utility. However, the kernel-resident Cache Manager agent also
needs to call a subset of the Volume Location Server’'s RPC interface routines. Thus,
a second Volume Location Server interface is available, built exclusively to satisfy the
Cache Manager’s limited needs. This subset interface is defined by the afsvlint.zg Rzgen
interface file, and is examined in the final section of this chapter.

Volume Location Server Interface 8 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.2 Constants

This section covers the basic constant definitions of interest to the Volume Location
Server application programmer. These definitions appear in the vidbint.h file, automati-
cally generated from the vildbint.zg Rxgen interface file, and in viserver.h.

Each subsection is devoted to describing the constants falling into the following cate-
gories:

e Configuration and boundary quantities
e Update entry bits

e List-by-attribute bits

e Volume type indices

e States for struct vlentry

e States for struct vldbentry

e ReleaseType argument values

e Miscellaneous items

3.2.1 Configuration and Boundary Quantities

These constants define some basic system values, including configuration information.

Volume Location Server Interface 9 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

VolumeDiskData inside a struct Volume’s header
field.

‘ Name ‘ Value ‘ Description ‘

MAXNAMELEN 65 Maximum size of various character strings, including
volume name fields in structures and host names.

MAXNSERVERS 8 Maximum number of replication sites for a volume.

MAXTYPES 3 Maximum number of volume types.

VLDBVERSION 1 VLDB database version number.

HASHSIZE 8,191 | Size of internal Volume Location Server volume name
and volume ID hash tables. This must always be a
prime number.

NULLO 0 Specifies a null pointer value.

VLDBALLOCCOUNT 40 Value used when allocating memory internally for
VLDB entry records.

BADSERVERID 255 Illegal Volume Location Server host 1D.

MAXSERVERID 30 Maximum number of servers appearing in the VLDB.

MAXSERVERFLAG 0x80 | First unused flag value in such fields as serverFlags
in struct vldbentry and RepsitesNewFlags in
struct VldbUpdateEntry .

MAXPARTITIONID 126 Maximum number of AFS disk partitions for any one
server.

MAXBUMPCOUNT Ox7fHtf | Maximum interval that the current high-watermark
value for a volume ID can be increased in one
operation.

MAXLOCKTIME Ox7ftttf | Maximum number of seconds that any VLDB entry
can remained locked.

SIZE 1,024 | Maximum size of the name field within a struct

3.2.2 Update Entry Bits

These constants define bit values for the Mask field in the struct VldbUpdateEntry.
Specifically, setting these bits is equivalent to declaring that the corresponding field
within an object of type struct V1dbUpdateEntry has been set. For example, setting
the VLUPDATE VOLUMENAME flag in Mask indicates that the name field contains a valid

value.

Volume Location Server Interface 10

August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

‘ Name

‘ Value ‘Descm’ption

VLUPDATE_VOLUMENAME 0x0001 | If set, indicates that the name field is valid.

VLUPDATE_VOLUMETYPE 0x0002 | If set, indicates that the volumeType field is
valid.

VLUPDATE FLAGS 0x0004 | If set, indicates that the flags field is valid.

VLUPDATE READONLYID 0x0008 | If set, indicates that the ReadOnlyId field is
valid.

VLUPDATE_BACKUPID 0x0010 | If set, indicates that the BackupId field is
valid.

VLUPDATE_REPSITES 0x0020 | If set, indicates that the nModifiedRepsites
field is valid.

VLUPDATE_CLONEID 0x0080 | If set, indicates that the cloneId field is valid.

VLUPDATE_REPS DELETE | 0x0100 | Is the replica being deleted?

VLUPDATE_REPS_ADD 0x0200 | Is the replica being added?

VLUPDATE_REPS MODSERV | 0x0400 | Is the server part of the replica location
correct?

VLUPDATE_REPS MODPART | 0x0800 | Is the partition part of the replica location
correct?

VLUPDATE REPS MODFLAG | 0x1000 | Various modification flag values.

3.2.3 List-By-Attribute Bits

These constants define bit values for the Mask field in the struct V1dbListByAttributes
is to be used in a match. Specifically, setting these bits is equivalent to declaring that the
corresponding field within an object of type struct V1dbListByAttributes is set. For
example, setting the VLLIST _SERVER flag in Mask indicates that the server field contains

a valid value.

‘ Name ‘ Value ‘ Description
VLLIST_SERVER Ox1 | If set, indicates that the server field is valid.
VLLIST PARTITION 0x2 | If set, indicates that the partition field is valid.
VLLIST VOLUMETYPE 0x4 | If set, indicates that the volumetype field is valid.
VLLIST VOLUMEID 0x8 | If set, indicates that the volumeid field is valid.
VLLIST_FLAG 0x10 | If set, indicates that the flag field is valid.

3.2.4 Volume Type Indices

These constants specify the order of entries in the volumeid array in an object of type

struct vldbentry. They also identify the three different types of volumes in AFS.

Volume Location Server Interface

11

August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

‘ Name ‘ Value ‘ Description
RWVOL 0 Read-write volume.
ROVOL 1 Read-only volume.
BACKVOL 2 Backup volume.

3.2.5 States for struct vlentry

The following constants appear in the flags field in objects of type struct vlentry.
The first three values listed specify the state of the entry, while all the rest stamp the
entry with the type of an ongoing volume operation, such as a move, clone, backup,
deletion, and dump. These volume operations are the legal values to provide to the
voloper parameter of the VL_SetLock() interface routine.

‘ Name ‘ Value ‘ Description ‘

VLFREE Ox1 | Entry is in the free list.

VLDELETED 0x2 | Entry is soft-deleted.

VLLOCKED 0x4 | Advisory lock held on the entry.

VLOP_MOVE 0x10 | The associated volume is being moved between servers.

VLOP_RELEASE | 0x20 | The associated volume is being cloned to its replication
sites.

VLOP_BACKUP 0x40 | A backup volume is being created for the associated
volume.

VLOP_DELETE 0x80 | The associated volume is being deleted.

VLOP_DUMP 0x100 | A dump is being taken of the associated volume.

For convenience, the constant VLOP_ALLOPERS is defined as the inclusive OR of the above
values from VLOP_MOVE through VLOP_DUMP.

3.2.6 States for struct vldbentry

Of the following constants, the first three appear in the flags field within an object
of type struct vldbentry, advising of the existence of the basic volume types for the
given volume, and hence the validity of the entries in the volumeId array field. The rest
of the values provided in this table appear in the serverFlags array field, and apply to
the instances of the volume appearing in the various replication sites.

This structure appears in numerous Volume Location Server interface calls, namely
VL_CreateEntry(), VL_GetEntryBylD(), VL_GetEntryByName(), VL_ReplaceEntry() and
VL_ListEntry().

Volume Location Server Interface 12 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

‘ Name ‘ Value ‘ Description
VLF_RWEXISTS 0x1000 | The read-write volume ID is valid.
VLF _ROEXISTS 0x2000 | The read-only volume ID is valid.

VLF_BACKEXISTS | 0x4000 | The backup volume ID is valid.

VLSF_NEWREPSITE | 0x01 | Not used; originally intended to mark an entry as
belonging to a partially-created volume instance.

VLSF_ROVOL 0x02 | A read-only version of the volume appears at this
server.

VLSF_RWVOL 0x04 | A read-write version of the volume appears at this
server.

VLSF_BACKVOL 0x08 | A backup version of the volume appears at this server.

3.2.7 ReleaseType Argument Values

The following values are used in the ReleaseType argument to various Volume Location
Server interface routines, namely VL_ReplaceEntry(), VL_UpdateEntry() and VL_ReleaseLock().

‘ Name ‘ Value ‘ Description ‘
LOCKREL_TIMESTAMP 1 Is the LockTimestamp field valid?
LOCKREL _OPCODE 2 Are any of the bits valid in the flags field?
LOCKREL_AFSID 4 Is the LockAfsId field valid?

3.2.8 Miscellaneous

Miscellaneous values.

‘ Name ‘ Value ‘ Description ‘

‘ VLREPSITE_NEW ‘ 1 ‘ Has a replication site gotten a new release of a volume? ‘

A synonym for this constant is VLSF_NEWREPSITE.

Volume Location Server Interface 13 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec
3.3 Structures and Typedefs

This section describes the major exported Volume Location Server data structures of
interest to application programmers, along with the typedefs based upon those structures.

3.3.1 struct vldbentry

This structure represents an entry in the VLDB as made visible to Volume Location
Server clients. It appears in numerous Volume Location Server interface calls, namely

VL_CreateEntry(), VL_GetEntryByID(), VL_GetEntryByName(), VL_ReplaceEntry() and
VL_ListEntry().

Fields

char name|] - The string name for the volume, with a maximum length of MAXNAMELEN
(65) characters, including the trailing null.

long volumeType - The volume type, one of RWVOL, ROVOL, or BACKVOL.
long nServers - The number of servers that have an instance of this volume.

long serverNumber[] - An array of indices into the table of servers, identifying
the sites holding an instance of this volume. There are at most MAXNSERVERS
(8) of these server sites allowed by the Volume Location Server.

long serverPartition[|] - An array of partition identifiers, corresponding directly to
the serverNumber array, specifying the partition on which each of those volume
instances is located. As with the serverNumber array, serverPartition has
up to MAXNSERVERS (8) entries.

long serverFlags[] - This array holds one flag value for each of the servers in the
previous arrays. Again, there are MAXNSERVERS (8) slots in this array.

u_long volumeld|[] - An array of volume IDs, one for each volume type. There are
MAXTYPES slots in this array.

long cloneld - This field is used during a cloning operation.

long flags - Flags concerning the status of the fields within this structure; see
Section 3.2.6 for the bit values that apply.

Volume Location Server Interface 14 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.3.2 struct vlentry

This structure is used internally by the Volume Location Server to fully represent a
VLDB entry. The client-visible struct vldbentry represents merely a subset of the
information contained herein.

Fields

u_long volumeld[] - An array of volume IDs, one for each of the MAXTYPES of
volume types.

long flags - Flags concerning the status of the fields within this structure; see
Section 3.2.6 for the bit values that apply.

long LockAfsld - The individual who locked the entry. This feature has not yet
been implemented.

long LockTimestamp - Time stamp on the entry lock.
long cloneld - This field is used during a cloning operation.
long AssociatedChain - Pointer to the linked list of associated VLDB entries.

long nextIdHash[] - Array of MAXTYPES next pointers for the ID hash table pointer,
one for each related volume ID.

long nextNameHash - Next pointer for the volume name hash table.
long sparesl[] - Two longword spare fields.

char namel] - The volume’s string name, with a maximum of MAXNAMELEN (65)
characters, including the trailing null.

u_char volumeType - The volume’s type, one of RWVOL, ROVOL, or BACKVOL.

u_char serverNumber[] - An array of indices into the table of servers, identifying
the sites holding an instance of this volume. There are at most MAXNSERVERS
(8) of these server sites allowed by the Volume Location Server.

u_char serverPartition[|] - An array of partition identifiers, corresponding directly
to the serverNumber array, specifying the partition on which each of those vol-
ume instances is located. As with the serverNumber array, serverPartition
has up to MAXNSERVERS (8) entries.

u_char serverFlags[] - This array holds one flag value for each of the servers in
the previous arrays. Again, there are MAXNSERVERS (8) slots in this array.

u_char RefCount - Only valid for read-write volumes, this field serves as a refer-
ence count, basically the number of dependent children volumes.

char spares2|] - This field is used for 32-bit alignment.

Volume Location Server Interface 15 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.3.3 struct vital vlheader

This structure defines the leading section of the VLDB header, of type struct vlheader.
It contains frequently-used global variables and general statistics information.

Fields

long vldbversion - The VLDB version number. This field must appear first in the
structure.

long headersize - The total number of bytes in the header.
long freePtr - Pointer to the first free enry in the free list, if any.
long eofPtr - Pointer to the first free byte in the header file.

long allocs - The total number of calls to the internal AllocBlock() function directed
at this file.

long frees - The total number of calls to the internal FreeBlock() function directed
at this file.

long MaxVolumeld - The largest volume ID ever granted for this cell.

long totalEntries[] - The total number of VLDB entries by volume type in the
VLDB. This array has MAXTYPES slots, one for each volume type.

3.3.4 struct vlheader

This is the layout of the information stored in the VLDB header. Notice it includes an
object of type struct vital_vlheader described above (see Section 3.3.3) as the first
field.

Fields

struct vital_vlheader vital_header - Holds critical VLDB header information.

u_long IpMappedAddr|] - Keeps MAXSERVERID+1 mappings of IP addresses to
relative ones.

long VolnameHash|[] - The volume name hash table, with HASHSIZE slots.

long VolidHash][|[] - The volume ID hash table. The first dimension in this array
selects which of the MAXTYPES volume types is desired, and the second dimen-
sion actually implements the HASHSIZE hash table buckets for the given volume

type.

Volume Location Server Interface 16 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.3.5 struct VldbUpdateEntry

This structure is used as an argument to the VL_UpdateEntry() routine (see Section
3.6.7). Please note that multiple entries can be updated at once by setting the appro-
priate Mask bits. The bit values for this purpose are defined in Section 3.2.2.

Fields

u_long Mask - Bit values determining which fields are to be affected by the update
operation.

char namel[] - The volume name, up to MAXNAMELEN (65) characters including the
trailing null.

long volumeType - The volume type.

long flags - This field is used in conjuction with Mask (in fact, one of the Mask bits
determines if this field is valid) to choose the valid fields in this record.

u_long ReadOnlyld - The read-only ID.
u_long Backupld - The backup ID.
long cloneld - The clone ID.

long nModifiedRepsites - Number of replication sites whose entry is to be changed
as below.

u_long RepsitesMask|[] - Array of bit masks applying to the up to MAXNSERVERS
(8) replication sites involved.

long RepsitesTargetServer[] - Array of target servers for the operation, at most
MAXNSERVERS (8) of them.
long RepsitesTargetPart[] - Array of target server partitions for the operation,

at most MAXNSERVERS (8) of them.

long RepsitesNewServer|[] - Array of new server sites, at most MAXNSERVERS (8)
of them.

long RepsitesNewPart[] - Array of new server partitions for the operation, at
most MAXNSERVERS (8) of them.

long RepsitesNewFlags[] - Flags applying to each of the new sites, at most
MAXNSERVERS (8) of them.
3.3.6 struct VldbListByAttributes

This structure is used by the VL_ListAttributes() routine (see Section 3.6.11).

Volume Location Server Interface 17 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Fields

u_long Mask - Bit mask used to select the following attribute fields on which to
match.

long server - The server address to match.
long partition - The partition ID to match.
long volumetype - The volume type to match.
long volumeid - The volume ID to match.

long flag - Flags concerning these values.

3.3.7 struct single vldbentry

This structure is used to construct the vldblist object (See Section 3.3.12), which
basically generates a queueable (singly-linked) version of struct vldbentry.

Fields

vldbentry VIidbEntry - The VLDB entry to be queued.
vldblist next_vldb - The next pointer in the list.

3.3.8 struct vldb_list

This structure defines the item returned in linked list form from the VL_LinkedList()
function (see Section 3.6.12). This same object is also returned in bulk form in calls to
the VL_ListAttributes() routine (see Section 3.6.11).

Fields

vldblist node - The body of the first object in the linked list.

3.3.9 struct vldstats

This structure defines fields to record statistics on opcode hit frequency. The MAX NUMBER_OPCODES
constant has been defined as the maximum number of opcodes supported by this struc-
ture, and is set to 30.

Volume Location Server Interface 18 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

Fields

unsigned long start_time - Clock time when opcode statistics were last cleared.

long requests[] - Number of requests received for each of the MAX_NUMBER _OPCODES
opcode types.

long aborts[] - Number of aborts experienced for each of the MAX_NUMBER_OPCODES
opcode types.

long reserved|] - These five longword fields are reserved for future use.

3.3.10 bulk

typedef opaque bulk<DEFAULTBULK>;

This typedef may be used to transfer an uninterpreted set of bytes across the Volume
Location Server interface. It may carry up to DEFAULTBULK (10,000) bytes.

Fields

bulk_len - The number of bytes contained within the data pointed to by the next
field.

bulk val - A pointer to a sequence of bulk len bytes.

3.3.11 bulkentries

typedef vldbentry bulkentries<>;

This typedef is used to transfer an unbounded number of struct vldbentry objects. It
appears in the parameter list for the VL_ListAttributes() interface function.

Fields

bulkentries len - The number of vldbentry structures contained within the data
pointed to by the next field.

bulkentries val - A pointer to a sequence of bulkentries len vldbentry struc-
tures.

Volume Location Server Interface 19 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.3.12 vldblist

typedef struct single_vldbentry *vldblist;

This typedef defines a queueable struct vldbentry object, referenced by the single vldbentry
typedef as well as struct vldb_list.

3.3.13 vlheader

typedef struct vlheader vlheader;

This typedef provides a short name for objects of type struct vlheader (see Section
3.3.4).

3.3.14 vlentry

typedef struct vlentry vlentry;

This typedef provides a short name for objects of type struct vlentry (see Section
3.3.2).

Volume Location Server Interface 20 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.4 Error Codes

This section covers the set of error codes exported by the Volume Location Server, dis-

playing the printable phrases with which they are associated.

Name ‘ Value

‘ Description

VL_IDEXIST

Volume Id entry exists in vl database.

VL_IO

I/O related error.

VL_NAMEEXIST

Volume name entry exists in vl database.

VL_CREATEFAIL

Internal creation failure.

VL_NOENT 363524L) | No such entry.

VL_EMPTY 363525L) | VI database is empty.

VL_ENTDELETED 363526L) | Entry is deleted (soft delete).
L

VL_BADNAME

Volume name is illegal.

VL_BADINDEX

Index is out of range.

VL_BADVOLTYPE

Bad volume type.

VL_BADSERVER

[llegal server number (out of range).

VL_BADPARTITION

Bad partition number.

VL_REPSFULL

Run out of space for Replication sites.

No such Replication server site exists.

VL_DUPREPSERVER

Replication site already exists.

VL_RWNOTFOUND

Parent R/W entry not found.

VL_BADREFCOUNT

[llegal Reference Count number.

VL_SIZEEXCEEDED

V1 size for attributes exceeded.

VL_BADENTRY

Bad incoming vl entry.

VL_BADVOLIDBUMP

[llegal max volid increment.

VL_IDALREADYHASHED

RO/BACK id already hashed.

VL_ENTRYLOCKED

V1 entry is already locked.

VL_BADVOLOPER

Bad volume operation code.

VL_BADRELLOCKTYPE

Bad release lock type.

VL_RERELEASE

Status report: last release was aborted.

VL_BADSERVERFLAG

Invalid replication site server flag.

VL_PERM

No permission access.

(

(

(

(

(

(

(

(

(

(

(

(

(L
VL_NOREPSERVER (363533L

(L

(

(

(

(

(

(

(

(

(

(

(

(

(

VL_NOMEM

malloc(realloc) failed to alloc enough memory.

Volume Location Server Interface

21 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.5 Macros

The Volume Location Server defines a small number of macros, as described in this
section. They are used to update the internal statistics variables and to compute offsets
into character strings. All of these macros really refer to internal operations, and strictly
speaking should not be exposed in this interface.

3.5.1 COUNT-REQ()

#define COUNT_REQ (op)
static int this_op = op-VL_LOWEST_OPCODE;
dynamic_statistics.requests[this_op]++

Bump the appropriate entry in the variable maintaining opcode usage statistics for the
Volume Location Server. Note that a static variable is set up to record this_op, namely

the index into the opcode monitoring array. This static variable is used by the related
COUNT_ABO() macro defined below.

3.5.2 COUNT.ABO()

#define COUNT_ABO dynamic_statistics.aborts[this_op]++

Bump the appropriate entry in the variable maintaining opcode abort statistics for the
Volume Location Server. Note that this macro does not take any arguemnts. It expects
to find a this_op variable in its environment, and thus depends on its related macro,
COUNT-REQ() to define that variable.

3.5.3 DOFFSET()

#define DOFFSET(abase, astr, aitem)
((abase)+(((char *) (aitem)) - ((char *)(astr))))

Compute the byte offset of charcter object aitem within the enclosing object astr,
also expressed as a character-based object, then offset the resulting address by abase.
This macro is used ot compute locations within the VLDB when actually writing out
information.

Volume Location Server Interface 22 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6 Functions

This section covers the Volume Location Server RPC interface routines. The majority
of them are generated from the vldbint.zg Rxzgen file, and are meant to be used by user-
space agents. There is also a subset interface definition provided in the afsvlint.zg Rzgen
file. These routines, described in Section 3.7, are meant to be used by a kernel-space
agent when dealing with the Volume Location Server; in particular, they are called by
the Cache Manager.

Volume Location Server Interface 23 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.1 VL _CreateEntry - Create a VLDB entry

int VL_CreateEntry (IN struct rx_connection *z_conn,
IN vldbentry *newentry)

Description

This function creates a new entry in the VLDB, as specified in the newentry argument.
Both the name and numerical ID of the new volume must be unique (e.g., it must not
already appear in the VLDB). For non-read-write entries, the read-write parent volume
is accessed so that its reference count can be updated, and the new entry is added to the
parent’s chain of associated entries.

The VLDB is write-locked for the duration of this operation.

Error Codes

VL_PERM The caller is not authorized to execute this function.

VL_NAMEEXIST The volume name already appears in the VLDB.
VL_CREATEFAIL Space for the new entry cannot be allocated within the VLDB.
VL_BADNAME The volume name is invalid.

VL_BADVOLTYPE The volume type is invalid.

VL_BADSERVER The indicated server information is invalid.

VL_BADPARTITION The indicated partition information is invalid.
VL_BADSERVERFLAG The server flag field is invalid.

VL_I0 An error occurred while writing to the VLDB.

Volume Location Server Interface 24 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.2 VL _DeleteEntry — Delete a VLDB entry

int VL_DeleteEntry (IN struct rx_connection *z_conn,
IN long Volid,
IN long voltype)

Description

Delete the entry matching the given volume identifier and volume type as specified in the
Volid and voltype arguments. For a read-write entry whose reference count is greater
than 1, the entry is not actually deleted, since at least one child (read-only or backup)
volume still depends on it. For cases of non-read-write volumes, the parent’s reference
count and associated chains are updated.

If the associated VLDB entry is already marked as deleted (i.e., its flags field has the
VLDELETED bit set), then no further action is taken, and VL_ENTDELETED is returned. The
VLDB is write-locked for the duration of this operation.

Error Codes

VL_PERM The caller is not authorized to execute this function.

VL _BADVOLTYPE An illegal volume type has been specified by the voltype argument.
VL_NOENT This volume instance does not appear in the VLDB.

VL_ENTDELETED The given VLDB entry has already been marked as deleted.
VL_I0 An error occurred while writing to the VLDB.

Volume Location Server Interface 25 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.3 VL _GetEntryByID - Get VLDB entry by volume ID/type

int VL_GetEntryByID (IN struct rx_connection *z_conn,
IN long Volid,
IN long voltype,
OUT vldbentry *entry)

Description

Given a volume’s numerical identifier (Volid) and type (voltype), return a pointer to
the entry in the VLDB describing the given volume instance.

The VLDB is read-locked for the duration of this operation.

Error Codes

VL_BADVOLTYPE An illegal volume type has been specified by the voltype argument.
VL_NOENT This volume instance does not appear in the VLDB.
VL_ENTDELETED The given VLDB entry has already been marked as deleted.

Volume Location Server Interface 26 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.4 VL _GetEntryByName - Get VLDB entry by volume name

int VL_GetEntryByName(IN struct rx_connection *z_conn,
IN char *volumename,
OUT vldbentry *entry)

Description

Given the volume name in the volumename parameter, return a pointer to the entry in
the VLDB describing the given volume. The name in volumename may be no longer
than MAXNAMELEN (65) characters, including the trailing null. Note that it is legal to use
the volume’s numerical identifier (in string form) as the volume name.

The VLDB is read-locked for the duration of this operation.

This function is closely related to the VL_GetEntryByID() routine, as might be expected.
In fact, the by-ID routine is called if the volume name provided in volumename is the
string version of the volume’s numerical identifier.

Error Codes

VL_BADVOLTYPE An illegal volume type has been specified by the voltype argument.
VL_NOENT This volume instance does not appear in the VLDB.

VL_ENTDELETED The given VLDB entry has already been marked as deleted.
VL_BADNAME The volume name is invalid.

Volume Location Server Interface 27 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.5 VL _GetNewVolumeld - Generate a new volume 1D

int VL_GetNewVolumeld (IN struct rx_connection *z_conn,
IN long bumpcount,
OUT long *newvolumid)

Description

Acquire bumpcount unused, consecutively-numbered volume identifiers from the Vol-
ume Location Server. The lowest-numbered of the newly-acquired set is placed in the
newvolumid argument. The largest number of volume IDs that may be generated with
any one call is bounded by the MAXBUMPCOUNT constant defined in Section 3.2.1. Cur-
rently, there is (effectively) no restriction on the number of volume identifiers that may
thus be reserved in a single call.

The VLDB is write-locked for the duration of this operation.

Error Codes

VL_PERM The caller is not authorized to execute this function.

VL_BADVOLIDBUMP The value of the bumpcount parameter exceeds the system limit
of MAXBUMPCOUNT.

VL_I0 An error occurred while writing to the VLDB.

Volume Location Server Interface 28 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.6 VL_ReplaceEntry - Replace entire contents of VLDB entry

int VL_ReplaceEntry(IN struct rx_connection *z_conn,
IN long Volid,
IN long voltype,
IN vldbentry *newentry,
IN long ReleaseType)

Description

Perform a wholesale replacement of the VLDB entry corresponding to the volume in-
stance whose identifier is Volid and type voltype with the information contained in
the newentry argument. Individual VLDB entry fields cannot be selectively changed
while the others are preserved; VL_UpdateEntry() should be used for this objective. The
permissible values for the ReleaseType parameter are defined in Section 3.2.7.

The VLDB is write-locked for the duration of this operation. All of the hash tables
impacted are brought up to date to incorporate the new information.

Error Codes

VL_PERM The caller is not authorized to execute this function.
VL_BADVOLTYPE An illegal volume type has been specified by the voltype argument.

VL_BADRELLOCKTYPE An illegal release lock has been specified by the ReleaseType
argument.

VL_NOENT This volume instance does not appear in the VLDB.
VL_BADENTRY An attempt was made to change a read-write volume ID.
VL. IO An error occurred while writing to the VLDB.

Volume Location Server Interface 29 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.7 VL_UpdateEntry - Update contents of VLDB entry

int VL_UpdateEntry (IN struct rx_connection *z_conn,
IN long Volid,
IN long voltype,
IN VldbUpdateEntry *UpdateEntry,
IN long ReleaseType)

Description

Update the VLDB entry corresponding to the volume instance whose identifier is Volid
and type voltype with the information contained in the UpdateEntry argument. Most
of the entry’s fields can be modified in a single call to VL_UpdateEntry(). The Mask field
within the UpdateEntry parameter selects the fields to update with the values stored
within the other UpdateEntry fields. Permissible values for the ReleaseType parameter
are defined in Section 3.2.7.

The VLDB is write-locked for the duration of this operation.

Error Codes

VL_PERM The caller is not authorized to execute this function.
VL_BADVOLTYPE An illegal volume type has been specified by the voltype argument.

VL_BADRELLOCKTYPE An illegal release lock has been specified by the ReleaseType
argument.

VL_NOENT This volume instance does not appear in the VLDB.
VL_I0 An error occurred while writing to the VLDB.

Volume Location Server Interface 30 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.8 VL_SetLock — Lock VLDB entry

int VL_SetLock(IN struct rx_connection *z_conn,
IN long Volid,
IN long voltype,
IN long voloper)

Description

Lock the VLDB entry matching the given volume ID (Volid) and type (voltype) for
volume operation voloper (e.g., VLOP_MOVE and VLOP RELEASE). If the entry is currently
unlocked, then its LockTimestamp will be zero. If the lock is obtained, the given voloper
is stamped into the flags field, and the LockTimestamp is set to the time of the call.

Note: when the caller attempts to lock the entry for a release operation, special care is
taken to abort the operation if the entry has already been locked for this operation, and
the existing lock has timed out. In this case, VL_SetLock() returns VL_RERELEASE.

The VLDB is write-locked for the duration of this operation.

Error Codes

VL_PERM The caller is not authorized to execute this function.
VL_BADVOLTYPE An illegal volume type has been specified by the voltype argument.

VL_BADVOLOPER An illegal volume operation was specified in the voloper argument.
Legal values are defined in the latter part of the table in Section 3.2.5.

VL_ENTDELETED The given VLDB entry has already been marked as deleted.

VL_ENTRYLOCKED The given VLDB entry has already been locked (which has not
yet timed out).

VL_RERELEASE A VLDB entry locked for release has timed out, and the caller also
wanted to perform a release operation on it.

VL_I0O An error was experienced while attempting to write to the VLDB.

Volume Location Server Interface 31 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.9 VL_ReleaseLock — Unlock VLDB entry

int VL_ReleaseLock(IN struct rx_connection *z_conn,
IN long Volid,
IN long voltype,
IN long ReleaseType)

Description

Unlock the VLDB entry matching the given volume ID (Volid) and type (voltype). The
ReleaseType argument determines which VLDB entry fields from flags and LockAfsId
will be cleared along with the lock timestamp in LockTimestamp. Permissible values for
the ReleaseType parameter are defined in Section 3.2.7.

The VLDB is write-locked for the duration of this operation.

Error Codes

VL_PERM The caller is not authorized to execute this function.
VL_BADVOLTYPE An illegal volume type has been specified by the voltype argument.

VL_BADRELLOCKTYPE An illegal release lock has been specified by the ReleaseType
argument.

VL_NOENT This volume instance does not appear in the VLDB.
VL_ENTDELETED The given VLDB entry has already been marked as deleted.
VL_I0O An error was experienced while attempting to write to the VLDB.

Volume Location Server Interface 32 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.10 VL _ListEntry — Get contents of VLDB via index

int VL_ListEntry(IN struct rx_connection *z_conn,
IN long previous_index,
0UT long *count,
OUT long *next_index,
OUT vldbentry *entry)

Description

This function assists in the task of enumerating the contents of the VLDB. Given an
index into the database, previous_index, this call return the single VLDB entry at that
offset, placing it in the entry argument. The number of VLDB entries left to list is
placed in count, and the index of the next entry to request is returned in next_index.
If an illegal index is provided, count is set to -1.

The VLDB is read-locked for the duration of this operation.

Error Codes

-—— None.

Volume Location Server Interface 33 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.11 VL_ListAttributes — List all VLDB entry matching given attributes,
single return object

int VL_ListAttributes(IN struct rx_connection *z _conn,
IN VldbListByAttributes *attributes,
OUT long *nentries,
OUT bulkentries *blkentries)

Description

Retrieve all the VLDB entries that match the attributes listed in the attributes pa-
rameter, placing them in the blkentries object. The number of matching entries is
placed in nentries. Matching can be done by server number, partition, volume type,
flag, or volume ID. The legal values to use in the attributes argument are listed in
Section 3.2.3. Note that if the VLLIST_VOLUMEID bit is set in attributes, all other bit
values are ignored and the volume ID provided is the sole search criterion.

The VLDB is read-locked for the duration of this operation.

Note that VL_ListAttributes() is a potentially expensive function, as sequential search
through all of the VLDB entries is performed in most cases.

Error Codes

VL_NOMEM Memory for the blkentries object could not be allocated.
VL_NOENT This specified volume instance does not appear in the VLDB.
VL_SIZEEXCEEDED Ran out of room in the blkentries object.

VL_I0 Error while reading from the VLDB.

Volume Location Server Interface 34 August 29, 1991 15:02

AFS-3 Vol/VL Server Spec

3.6.12 VL_LinkedList — List all VLDB entry matching given attributes,
linked list return object

int VL_LinkedList (IN struct rx_connection *z_conn,
IN VldbListByAttributes *attributes,
OUT long *nentries,
OUT vldb_list *linkedentries)

Description

Retrieve all the VLDB entries that match the attributes listed in the attributes param-
eter, creating a linked list of entries based in the linkedentries object. The number
of matching entries is placed in nentries. Matching can be done by server number,
partition, volume type,