AFS-3 Programmer’s Reference:
File Server/Cache Manager Interface

Edward R. Zayas

Transarc Corporation

Version 1.1 of 20 Aug 1991 9:38
(©Copyright 1991 Transarc Corporation
All Rights Reserved
FS-00-D162

AFS-3 FS/CM Programmer’s Ref

Contents

1 Overview 1
1.1 Imtroduction 1
1.1.1 The AFS 3.1 Distributed File System 1

1.1.2 Scope of this Document 6

1.1.3 Related Documents 6

1.2 Basic Concepts 7
1.3 Document Layout o 9

2 File Server Architecture Lo 10
2.1 Overview 10
2.2 Interactions 10
2.3 Threading 11

2.4 Callback Race Conditions 12
2.5 Read-Only Volume Synchronization 13
2.6 Disposal of Cache Manager Records 13

3 Cache Manager Architecture, .. 15
3.1 Overview 15
3.2 Interactions 17
3.3 Implementation Techniques 17
3.3.1 VFS Interface 17

332 System Calls 18

3.3.3 Threading 18

3.4 Disposal of Cache Manager Records 19

4 Common Definitions and Data Structures 21
4.1 File-Related Definitions, 21
4.1.1 struct AFSFid 21

4.2 Callback-related Definitions 22
421 Typesof Callbacks 22

4.2.2 struct AFSCallBack 22

4.2.3 Callback Arrays 22

Table of Contents i August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

4231 struct AFSCBFids 23

4232 struct AFSCBs. 23

4.3 Locking Definitions o 23
4.3.1 struct AFSDBLockDesc 23
4.3.2 struct AFSDBCacheEntry 24
4.3.3 struct AFSDBLock 24

4.4 Miscellaneous Definitions 25
4.4.1 Opaque structures 25
4.4.2 String Lengths o oo 25

5 File Server Interfaces 26
5.1 RPC Interface 27
5.1.1 Introduction and Caveats 27
5.1.2 Definitions and Structures 27
5.1.2.1 Constants and Typedefs 27

5.1.2.1.1 AFS_DISKNAMESIZE 28

5.1.2.1.2 AFS_MAX_ XSTAT LONGS 28

5.1.2.1.3 AFS_XSTATSCOLL_CALL_INFO 28

5.1.2.14 AFS_XSTATSCOLL_PERF_INFO 28

5.1.2.1.5 AFS CollData 28

5.1.2.1.6 AFSBulkStats 29

5.1.2.1.7 DiskName 29

5.1.2.1.8 ViceLockType 29

5.1.2.2 struct AFSVolSync 30

5.1.2.3 struct AFSFetchStatus 30

5.1.2.4 struct AFSStoreStatus 31

5.1.2.5 struct ViceDisk 31

5.1.2.6 struct ViceStatistics 32

5.1.2.7 struct afs PerfStats 34

5.1.2.8 struct AFSFetchVolumeStatus 37

5.1.2.9 struct AFSStoreVolumeStatus 38

5.1.2.10 struct AFSVolumelnfo. 38

5.1.3 Non-Streamed Function Calls 39
5.1.3.1 RXAFS_FetchACL 40

5.1.3.2 RXAFS_FetchStatus 41

5.1.3.3 RXAFS_StoreACL 42

5.1.3.4 RXAFS_StoreStatus 43

5.1.3.5 RXAFS_RemoveFile 44

5.1.3.6 RXAFS_CreateFile 45

5.1.3.7 RXAFS_ Rename 46

5.1.3.8 RXAFSSymlink 47

Table of Contents

i August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

5.1.39 RXAFSLink 48

5.1.3.10 RXAFS_MakeDir 49

5.1.3.11 RXAFS_RemoveDir 50

5.1.3.12 RXAFS_GetStatistics 51

5.1.3.13 RXAFS_GiveUpCallBacks 52

5.1.3.14 RXAFS_GetVolumelnfo 53

5.1.3.15 RXAFS_GetVolumeStatus 54

5.1.3.16 RXAFS_SetVolumeStatus 55

5.1.3.17 RXAFS_GetRootVolume 56

5.1.3.18 RXAFS_CheckToken 57

5.1.3.19 RXAFS_GetTime 58

5.1.3.20 RXAFS_NGetVolumelnfo 59

5.1.3.21 RXAFS_ BulkStatus 60

5.1.3.22 RXAFS SetLock 61

5.1.3.23 RXAFS_ExtendLock 62

5.1.3.24 RXAFS_ReleaseLock 63

5.1.3.25 RXAFS_XStatsVersion 64

5.1.3.26 RXAFS_GetXStats 65

5.1.4 Streamed Function Calls. 65
5.1.4.1 StartRXAFS_FetchData 67

5.1.4.2 EndRXAFS_FetchData 68

5.1.4.3 StartRXAFS_StoreData 69

5.1.4.4 EndRXAFS_StoreData 70

5.1.5 Example of Streamed Function Call Usage 71
5.1.5.1 Preface 71

5.1.5.2 Code Fragment Illustrating Fetch Operation 71

5.1.5.3 Discussion and Analysis 72

5.1.6 Required Caller Functionality 73

5.2 Signal Interface 74
5.2.1 SIGQUIT: Server Shutdown 74
5.2.2 SIGTSTP: Upgrade Debugging Level 74
5.2.3 SIGHUP: Reset Debugging Level 75
5.2.4 SIGTERM: File Descriptor Check 75

5.3 Command Line Interface 75
6 Cache Manager Interfaces 78
6.1 Overview e 78
6.2 Definitions 79
6.2.1 struct VenusFid 79
6.2.2 struct ClearToken 80

6.3 doctl() Interface 80

Table of Contents iii August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.4

6.3.1 VIOCCLOSEWAIT. i i i it i e 80
6.3.2 VIOCABORT v vttt e e e 81
6.3.3 VIOIGETCELL o v v v et e e e e e 81
pioctl() Interface Lo 81
6.4.1 Introduction 81
6.4.2 Mount Point Asymmetry 84
6.4.3 Volume Operations. 84
6.4.3.1 VIOCGETVOLSTAT: Get volume status for pathname . . . 84
6.4.3.2 VIOCSETVOLSTAT: Set volume status for pathname . . . 85

6.4.3.3 VIOCWHEREIS: Find the server(s) hosting the pathname’s
volume 85

6.4.3.4 VIOC_FLUSHVOLUME: Flush all data cached from the path-
name’s volume 85

6.4.3.5 VIOCCKBACK: Check validity of all cached volume infor-
mation 86
6.4.4 File Server Operations 86

6.4.4.1 VIOCGETFID: Get augmented fid for named file system
object 86
6.4.4.2 VIOCFLUSHCB: Unilaterally drop a callback 87
6.4.4.3 VIOC_AFS DELETE MT PT: Delete a mount point 87

6.4.4.4 VIOC_AFS_STAT MT_PT: Get the contents of a mount point 87
6.4.4.5 VIOCCKSERV: Check the status of one or more File Servers 88

6.4.5 Cell Operations 89
6.4.5.1 VIOCNEWCELL: Set cell service information 89
6.4.5.2 VIOCGETCELL: Get cell configuration entry 89
6.4.5.3 VIOC_FILE CELL NAME: Get cell hosting a given object . 90
6.4.5.4 VIOC_GET WS_CELL: Get caller’s home cell name 90
6.4.5.5 VIOC_GET _PRIMARY CELL: Get the caller’s primary cell . 90
6.4.5.6 VIOC_GETCELLSTATUS: Get status info for a cell entry . . 91
6.4.5.7 VIOC_SETCELLSTATUS: Set status info for a cell entry . . 91
6.4.6 Authentication Operations 92
6.4.6.1 VIOCSETTOK: Set the caller’s token for a cell 92
6.4.6.2 VIOCGETTOK: Get the caller’s token for a cell 93
6.4.6.3 VIOCACCESS: Check caller’s access on object 93
6.4.6.4 VIOCCKCONN: Check status of caller’s tokens/connections 94
6.4.6.5 VIOCUNLOG: Discard authentication information 94
6.4.6.6 VIOCUNPAG: Discard authentication information 94
6.4.7 ACL Operations 94
6.4.7.1 VIOCSETAL: Set the ACL on a directory 96
6.4.7.2 VIOCGETAL: Get the ACL for a directory 96
6.4.8 Cache Operations 96

Table of Contents iv August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

6.4.8.1 VIOCFLUSH: Flush an object from the cache 97
6.4.8.2 VIOCSETCACHESIZE: Set maximum cache size in blocks . 97
6.4.8.3 VIOCGETCACHEPARAMS: Get current cache parameter val-

UES & v v v e e e e e e 97

6.4.9 Miscellaneous Operations 98
6.4.9.1 VIOC_AFS_MARINER HOST: Get/set file transfer monitor-

ingoutput Lo 98

6.4.9.2 VIOC_VENUSLOG: Enable/disable Cache Manager logging 98

6.4.9.3 VIOC_AFS_SYSNAME: Get/set the @sys mapping 99

6.4.9.4 VIOC_EXPORTAFS: Enable/disable NFS/AFS translation 99

6.5 RPC Interface e 100

6.5.1 Introduction 100

6.5.2 Locks 101

6.5.3 Definitions and Typedefs 102

6.5.4 Structures 103

6.5.4.1 struct afs_MeanStats 103

6.5.4.2 struct afs CMCallStats 103

6.5.4.3 struct afs. CMMeanStats 104

6.5.4.4 struct afs.CMStats 104

6.5.4.5 struct afs.CMPerfStats 104

6.5.5 Function Calls 105

6.5.5.1 RXAFSCB_Probe 107

6.5.5.2 RXAFSCB_ CallBack 108

6.5.5.3 RXAFSCB_InitCallBackState 109

6.5.5.4 RXAFSCB_GetLock 110

6.5.5.5 RXAFSCB GetCE. 111

6.5.5.6 RXAFSCB_XStatsVersion 112

6.5.5.7 RXAFSCB_GetXStats. 113

6.6 Files 114

6.6.1 Configuration Files 114

6.6.1.1 ThisCell 114

6.6.1.2 CellServDB 114

6.6.1.3 cacheinfo 116

6.6.2 Cache Information Files 116

6.6.2.1 AFSLog. 116

6.6.2.2 Cacheltems 117

6.6.2.3 Volumeltems 117

6.7 Mariner Interface 118

A struct afs CMCallStats 120

Index i

Table of Contents \ August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Chapter 1

Overview

1.1 Introduction

1.1.1 The AFS 3.1 Distributed File System

AFS 3.1 is a distributed file system (DFS) designed to meet the following set of require-
ments:

e Server-client model: Permanent file storage for AFS is maintained by a col-
lection of file server machines. This centralized storage is accessed by individuals
running on client machines, which also serve as the computational engines for those
users. A single machine may act as both an AFS file server and client simultane-
ously. However, file server machines are generally assumed to be housed in a secure
environment, behind locked doors.

e Scale: Unlike other existing DFSs, AFS was designed with the specific goal of
supporting a very large user community. Unlike the rule-of-thumb ratio of 20
client machines for every server machine (20:1) used by Sun Microsystem’s NFS
distributed file system [4][5], the AFS architecture aims at smoothly supporting
client /server ratios more along the lines of 200:1 within a single installation.

AFS also provides another, higher-level notion of scalability. Not only can each
independently-administered AFS site, or cell, grow very large (on the order of
tens of thousands of client machines), but individual cells may easily collaborate
to form a single, unified file space composed of the union of the individual name
spaces. Thus, users have the image of a single UNIX file system tree rooted at the

Overview 1 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

/afs directory on their machine. Access to files in this tree is performed with the
standard UNIX commands, editors, and tools, regardless of a file’s location.

These cells and the files they export may be geographically dispersed, thus requiring
client machines to access remote file servers across network pathways varying widely
in speed, latency, and reliability. The AFS architecture encourages this concept of
a single, wide-area file system. As of this writing, the community AFS filespace
includes sites spanning the continental United States and Hawaii, and also reaches
overseas to various installations in Europe, Japan, and Australia.

e Performance: This is a critical consideration given the scalability and connec-
tivity requirements described above. A high-performance system in the face of
high client /server ratios and the existence of low-bandwidth, high-latency network
connections as well as the normal high-speed ones is achieved by two major mech-
anisms:

— Caching: Client machines make extensive use of caching techniques wherever
possible. One important application of this methodology is that each client
is required to maintain a cache of files it has accessed from AFS file servers,
performing its operations exclusively on these local copies. This file cache is
organized in a least-recently-used (LRU) fashion. Thus, each machine will
build a local working set of objects being referenced by its users. As long as
the cached images remain “current” (i.e., compatible with the central version
stored at the file servers), operations may be performed on these files without
further communication with the central servers. This results in significant
reductions in network traffic and server loads, paving the way for the target
client /server ratios.

This file cache is typically located on the client’s local hard disk, although a
strictly in-memory cache is also supported. The disk cache has the advantage
that its contents will survive crashes and reboots, with the expectation that
the majority of cached objects will remain current. The local cache param-
eters, including the maximum number of blocks it may occupy on the local
disk, may be changed on the fly. In order to avoid having the size of the client
file cache become a limit on the length of an AFS file, caching is actually
performed on chunks of the file. These chunks are typically 64 Kbytes in
length, although the chunk size used by the client is settable when the client
starts up.

— Callbacks: The use of caches by the file system, as described above, raises
the thorny issue of cache consistency. Each client must efficiently determine
whether its cached file chunks are identical to the corresponding sections of
the file as stored at the server machine before allowing a user to operate on
those chunks. AFS employs the notion of a callback as the backbone of its

Overview 2 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

cache consistency algorithm. When a server machine delivers one or more
chunks of a file to a client, it also includes a callback “promise” that the client
will be notified if any modifications are made to the data in the file. Thus, as
long as the client machine is in possession of a callback for a file, it knows it is
correctly synchronized with the centrally-stored version, and allows its users
to operate on it as desired without any further interaction with the server.
Before a file server stores a more recent version of a file on its own disks, it will
first break all outstanding callbacks on this item. A callback will eventually
time out, even if there are no changes to the file or directory it covers.

e Location transparency: The typical AFS user does not know which server or
servers houses any of his or her files. In fact, the user’s storage may be distributed
among several servers. This location transparency also allows user data to be
migrated between servers without users having to take corrective actions, or even
becoming aware of the shift.

e Reliability: The crash of a server machine in any distributed file system will
cause the information it hosts to become unavailable to the user community. The
same effect is caused when server and client machines are isolated across a network
partition. AFS addresses this situation by allowing data to be replicated across
two or more servers in a read-only fashion. If the client machine loses contact
with a particular server from which it is attempting to fetch data, it hunts among
the remaining machines hosting replicas, looking for one that is still in operation.
This search is performed without the user’s knowledge or intervention, smoothly
masking outages whenever possible. Each client machine will automatically per-
form periodic probes of machines on its list of known servers, updating its internal
records concerning their status. Consequently, server machines may enter and exit
the pool without administrator intervention.

Replication also applies to the various databases employed by the AFS server pro-
cesses. These system databases are read/write replicated with a single synchro-
nization site at any instant. If a synchronization site is lost due to failure, the
remaining database sites elect a new synchronization site automatically without
operator intervention.

e Security: A production file system, especially one which allows and encourages
transparent access between administrative domains, must be conscious of security
issues. AF'S considers the server machines as “trusted”, being kept behind locked
doors and only directly manipulated by administrators. On the other hand, client
machines are, by definition, assumed to exist in inherently insecure environments.
These client machines are recognized to be fully accessible to their users, making
AFS servers open to attacks mounted by possibly modified hardware, operating
systems, and software from its clients.

Overview 3 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

To provide credible file system security, AFS employs an authentication system
based on the Kerberos facility developed by Project Athena at MIT [6][7]. Users
operating from client machines are required to interact with Authentication Server
agents running on the secure server machines to generate secure tokens of identity.
These tokens express the user’s identity in an encrypted fashion, and are stored in
the kernel of the client machine. When the user attempts to fetch or store files, the
server may challenge the user to verify his or her identity. This challenge, hidden
from the user and handled entirely by the RPC layer, will transmit this token to
the file server involved in the operation. The server machine, upon decoding the
token and thus discovering the user’s true identity, will allow the caller to perform
the operation if permitted.

e Access control: The standard UNIX access control mechanism associates mode bits
with every file and directory, applying them based on the user’s numerical identifier
and the user’s membership in various groups. AFS has augmented this traditional
access control mechanism with Access Control Lists (ACLs). Every AFS directory
has an associated ACL which defines the principals or parties that may operate
on all files contained in the directory, and which operations these principals may
perform. Rights granted by these ACLs include read, write, delete, lookup, insert
(create new files, but don’t overwrite old files), and administer (change the ACL).
Principals on these ACLs include individual users and groups of users. These
groups may be defined by AFS users without administrative intervention. AFS
ACLs provide for much finer-grained access control for its files.

e Administrability: Any system with the scaling goals of AFS must pay close
attention to its ease of administration. The task of running an AFS installation is
facilitated via the following mechanisms:

— Pervasive RPC interfaces: Access to AFS server agents is performed
mostly via RPC interfaces. Thus, servers may be queried and operated upon
regardless of their location. In combination with the security system outlined
above, even administrative functions such as instigating backups, reconfigur-
ing server machines, and stopping and restarting servers may be performed
by an administrator sitting in front of any AFS-capable machine, as long as
the administrator holds the proper tokens.

— Replication: As AFS supports read-only replication for user data and read-
write replication for system databases, much of the system reconfiguration
work in light of failures is performed transparently and without human inter-
vention. Administrators thus typically have more time to respond to many
common failure situations.

— Data mobility: Improved and balanced utilization of disk resources is fa-
cilitated by the fact that AFS supports transparent relocation of user data

Overview 4 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

between partitions on a single file server machine or between two different
machines. In a situation where a machine must be brought down for an ex-
tended period, all its storage may be migrated to other servers so that users
may continue their work completely unaffected.

— Automated “nanny” services: Each file server machine runs a BOS Server
process, which assists in the machine’s administration. This server is respon-
sible for monitoring the health of the AFS agents under its care, bringing
them up in the proper order after a system reboot, answering requests as to
their status and restarting them when they fail. It also accepts commands
to start, suspend, or resume these processes, and install new server binaries.
Accessible via an RPC interface, this supervisory process relieves administra-
tors of some oversight responsibilities and also allows them to perform their
duties from any machine running AFS, regardless of location or geographic
distance from the targeted file server machine.

— On-line backup: Backups may be performed on the data stored by the
AFS file server machines without bringing those machines down for the dura-
tion. Copy-on-write “snapshots” are taken of the data to be preserved, and
tape backup is performed from these clones. One added benefit is that these
backup clones are on-line and accessible by users. Thus, if someone acciden-
tally deletes a file that is contained in their last snapshot, they may simply
copy its contents as of the time the snapshot was taken back into their active
workspace. This facility also serves to improve the administrability of the
system, greatly reducing the number of requests to restore data from tape.

— On-line help: The set of provided program tools used to interact with the
active AFS agents are self-documenting in that they will accept command-line
requests for help, displaying descriptive text in response.

— Statistics: Each AFS agent facilitates collection of statistical data on its
performance, configuration, and status via its RPC interface. Thus, the sys-
tem is easy to monitor. One tool that takes advantage of this facility is the
scout program. Scout polls file server machines periodically, displaying us-
age statistics, current disk capacities, and whether the server is unavailable.
Administrators monitoring this information can thus quickly react to correct
overcrowded disks and machine crashes.

e Coexistence: Many organizations currently employ other distributed file systems,
most notably NFS. AFS was designed to run simultaneously with other DFSs with-
out interfering in their operation. In fact, an NFS-AFS translator agent exists that
allows pure-NFS client machines to transparently access files in the AFS commu-
nity.

Overview 5 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

e Portability: Because AFS is implemented using the standard VFS and vnode
interfaces pioneered and advanced by Sun Microsystems, AFS is easily portable
between different platforms from a single vendor or from different vendors.

1.1.2 Scope of this Document

This document is a member of a documentation suite providing specifications of the
operations and interfaces offered by the various AFS servers and agents. Specifically,
this document will focus on two of these system agents:

e [ile Server: This AFS entity is responsible for providing a central disk reposi-
tory for a particular set of files and for making these files accessible to properly-
authorized users running on client machines. The File Server is implemented as a
user-space process

e Cache Manager: This code, running within the kernel of an AFS client machine,
is a user’s representative in communicating with the File Servers, fetching files
back and forth into the local cache as needed. The Cache Manager also keeps
information as to the composition of its own cell as well as the other AFS cells in
existence. It resolves file references and operations, determining the proper File
Server (or group of File Servers) that may satisfy the request. In addition, it is
also a reliable repository for the user’s authentication information, holding on to
their tokens and wielding them as necessary when challenged.

1.1.3 Related Documents

The full AFS specification suite of documents is listed below:

o AFS-3 Programmer’s Reference: Architectural Overview: This paper provides an
architectual overview of the AFS distributed file system, describing the full set of
servers and agents in a coherent way, illustrating their relationships to each other
and examining their interactions.

o AFS-3 Programmer’s Reference:Volume Server/Volume Location Server Interface:
This document describes the services through which “containers” of related user
data are located and managed.

o AFS-3 Programmer’s Reference: Protection Server Interface: This paper describes
the server responsible for providing two-way mappings between printable user

Overview 6 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

names and their internal AFS identifiers. The Protection Server also allows users to
create, destroy, and manipulate “groups” of users, which are suitable for placement
on ACLs.

e AFS-3 Programmer’s Reference: BOS Server Interface: This paper explicates the
“nanny” service described above, which assists in the administrability of the AFS
environment.

e AFS-3 Programmer’s Reference: Specification for the Rx Remote Procedure Call
Facility: This document specifies the design and operation of the remote procedure
call and lightweight process packages used by AFS.

In addition to these papers, the AFS 3.1 product is delivered with its own user, admin-
istrator, installation, and command reference documents.

1.2 Basic Concepts

To properly understand AFS operation, specifically the tasks and objectives of the File
Server and Cache Manager, it is necessary to introduce and explain the following con-
cepts:

e Cell: A cell is the set of server and client machines operated by an administratively
independent organization. The cell administrators make decisions concerning such
issues as server deployment and configuration, user backup schedules, and replica-
tion strategies on their own hardware and disk storage completely independently
from those implemented by other cell administrators regarding their own domains.
Every client machine belongs to exactly one cell, and uses that information to de-
termine the set of database servers it uses to locate system resources and generate
authentication information.

e Volume: AFS disk partitions do not directly host individual user files or direc-
tories. Rather, connected subtrees of the system’s directory structure are placed
into containers called volumes. Volumes vary in size dynamically as objects are
inserted, overwritten, and deleted. Each volume has an associated quota, or max-
imum permissible storage. A single UNIX disk partition may host one or more
volumes, and in fact may host as many volumes as physically fit in the storage
space. However, a practical maximum is 3,500 volumes per disk partition, since
this is the highest number currently handled by the salvager program. The salvager
is run on occasions where the volume structures on disk are inconsistent, repair-
ing the damage. A compile-time constant within the salvager imposes the above

Overview 7 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

limit, causing it to refuse to repair any inconsistent partition with more than 3,500
volumes.

Volumes serve many purposes within AFS. First, they reduce the number of objects
with which an administrator must be concerned, since operations are normally per-
formed on an entire volume at once (and thus on all files and directories contained
within the volume). In addition, volumes are the unit of replication, data mobility
between servers, and backup. Disk utilization may be balanced by transparently
moving volumes between partitions.

e Mount Point: The connected subtrees contained within individual volumes stored
at AFS file server machines are “glued” to their proper places in the file space de-
fined by a site, forming a single, apparently seamless UNIX tree. These attachment
points are referred to as mount points. Mount points are persistent objects, im-
plemented as symbolic links whose contents obey a stylized format. Thus, AFS
mount points differ from NFS-style mounts. In the NFS environment, the user
dynamically mounts entire remote disk partitions using any desired name. These
mounts do not survive client restarts, and do not insure a uniform namespace
between different machines.

As a Cache Manager resolves an AFS pathname as part of a file system operation
initiated by a user process, it recognizes mount points and takes special action
to resolve them. The Cache Manager consults the appropriate Volume Location
Server to discover the File Server (or set of File Servers) hosting the indicated
volume. This location information is cached, and the C'ache Managerthen proceeds
to contact the listed File Server(s) in turn until one is found that responds with
the contents of the volume’s root directory. Once mapped to a real file system
object, the pathname resolution proceeds to the next component.

e Database Server: A set of AFS databases is required for the proper functioning
of the system. Each database may be replicated across two or more file server
machines. Access to these databases is mediated by a database server process
running at each replication site. One site is declared to be the synchronization
site, the sole location accepting requests to modify the databases. All other sites
are read-only with respect to the set of AFS users. When the synchronization site
receives an update to its database, it immediately distributes it to the other sites.
Should a synchronization site go down through either a hard failure or a network
partition, the remaining sites will automatically elect a new synchronization site
if they form a quorum, or majority. This insures that multiple synchronization
sites do not become active in the network partition scenario.

The classes of AFS database servers are listed below:

— Authentication Server: This server maintains the authentication database
used to generate tokens of identity.

Overview 8 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

— Protection Server: This server maintains mappings between human-readable
user account names and their internal numerical AFS identifiers. It also man-
ages the creation, manipulation, and update of user-defined groups suitable
for use on ACLs.

— Volume Location Server: This server exports information concerning the lo-
cation of the individual volumes housed within the cell.

1.3 Document Layout

Following this introduction and overview, Chapter 2 describes the architecture of the File
Server process design. Similarly, Chapter 3 describes the architecture of the in-kernel
Cache Manager agent. Following these architectural examinations, Chapter 4 provides a
set of basic coding definitions common to both the AFS File Server and Cache Manager,
required to properly understand the interface specifications which follow. Chapter 5
then proceeds to specify the various File Server interfaces. The myriad Cache Manager
interfaces are presented in Chapter 6, thus completing the document.

Overview 9 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Chapter 2

File Server Architecture

2.1 Overview

The AFS File Serveris a user-level process that presides over the raw disk partitions on
which it supports one or more volumes. It provides “half” of the fundamental service
of the system, namely exporting and regimenting access to the user data entrusted to
it. The Cache Manager provides the other half, acting on behalf of its human users to
locate and access the files stored on the file server machines.

This chapter examines the structure of the File Server process. First, the set of AFS
agents with which it must interact are discussed. Next, the threading structure of the
server is examined. Some details of its handling of the race conditions created by the
callback mechanism are then presented. This is followed by a discussion of the read-only
volume synchronization mechanism. This functionality is used in each RPC interface call
and intended to detect new releases of read-only volumes. File Servers do not generate
callbacks for objects residing in read-only volumes, so this synchronization information
is used to implement a “whole-volume” callback. Finally, the fact that the File Server
may drop certain information recorded about the Cache Managers with which it has
communicated and yet guarantee correctness of operation is explored.

2.2 Interactions

By far the most frequent partner in File Server interactions is the set of Cache Managers
actively fetching and storing chunks of data files for which the File Server provides central
storage facilities. The File Server also periodically probes the Cache Managers recorded

File Server Architecture 10 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

in its tables with which it has recently dealt, determining if they are still active or
whether their records might be garbage-collected.

There are two other server entities with which the File Server interacts, namely the
Protection Server and the BOS Server. Given a fetch or store request generated by a
Cache Manager, the File Server needs to determine if the caller is authorized to perform
the given operation. An important step in this process is to determine what is referred
to as the caller’s Current Protection Subdomain, or CPS. A user’s CPS is a list
of principals, beginning with the user’s internal identifier, followed by the the numeri-
cal identifiers for all groups to which the user belongs. Once this CPS information is
determined, the File Server scans the ACL controlling access to the file system object
in question. If it finds that the ACL contains an entry specifying a principal with the
appropriate rights which also appears in the user’s CPS, then the operation is cleared.
Otherwise, it is rejected and a protection violation is reported to the Cache Manager for
ultimate reflection back to the caller.

The BOS Server performs administrative operations on the File Server process. Thus,
their interactions are quite one-sided, and always initiated by the BOS Server. The BOS
Server does not utilize the File Server’s RPC interface, but rather generates UNIX signals
to achieve the desired effect.

2.3 Threading

The File Server is organized as a multi-threaded server. Its threaded behavior within
a single UNIX process is achieved by use of the LWP lightweight process facility, as
described in detail in the companion “AFS-3 Programmer’s Reference: Specification for
the Rz Remote Procedure Call Facility” document. The various threads utilized by the
File Server are described below:

e WorkerLWP: This lightweight process sleeps until a request to execute one of
the RPC interface functions arrives. It pulls the relevant information out of the
request, including any incoming data delivered as part of the request, and then
executes the server stub routine to carry out the operation. The thread finishes its
current activation by feeding the return code and any output data back through the
RPC channel back to the calling Cache Manager. The File Server initialization
sequence specifies that at least three but no more than six of these WorkerLWP
threads are to exist at any one time. It is currently not possible to configure the
File Server process with a different number of WorkerLWP threads.

File Server Architecture 11 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

e FiveMinuteCheckLWP: This thread runs every five minutes, performing such
housekeeping chores as cleaning up timed-out callbacks, setting disk usage statis-
tics, and executing the special handling required by certain AIX implementa-
tions. Generally, this thread performs activities that do not take unbounded
time to accomplish and do not block the thread. If reassurance is required,
FiveMinuteCheckLWP can also be told to print out a banner message to the ma-
chine’s console every so often, stating that the File Server process is still running.
This is not strictly necessary and an artifact from earlier versions, as the File
Server’s status is now easily accessible at any time through the BOS Server run-
ning on its machine.

e HostCheckLWP: This thread, also activated every five minutes, performs pe-
riodic checking of the status of Cache Managers that have been previously con-
tacted and thus appear in this File Server’s internal tables. It generates RXAF-
SCB_Probe() calls from the Cache Manager interface, and may find itself suspended
for an arbitrary amount of time when it enounters unreachable Cache Managers.

2.4 Callback Race Conditions

Callbacks serve to implement the efficient AFS cache consistency mechanism, as de-
scribed in Section 1.1.1. Because of the asynchronous nature of callback generation
and the multi-threaded operation and organization of both the File Server and Cache
Manager, race conditions can arise in their use. As an example, consider the case of a
client machine fetching a chunk of file X. The File Server thread activated to carry out
the operation ships the contents of the chunk and the callback information over to the
requesting Cache Manager. Before the corresponding Cache Manager thread involved
in the exchange can be scheduled, another request arrives at the File Server, this time
storing a modified image of the same chunk from file X. Another worker thread comes
to life and completes processing of this second request, including execution of an RX-
AFSCB_CallBack() to the Cache Manager who still hasn’t picked up on the results of
its fetch operation. If the Cache Manager blindly honors the RXAFSCB_CallBack()
operation first and then proceeds to process the fetch, it will wind up believing it has a
callback on X when in reality it is out of sync with the central copy on the File Server.
To resolve the above class of callback race condition, the Cache Manager effectively
doublechecks the callback information received from File Server calls, making sure they
haven’t already been nullified by other file system activity.

File Server Architecture 12 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref
2.5 Read-Only Volume Synchronization

The File Server issues a callback for each file chunk it delivers from a read-write vol-
ume, thus allowing Cache Managers to efficiently synchronize their local caches with
the authoritative File Server images. However, no callbacks are issued when data from
read-only volumes is delivered to clients. Thus, it is possible for a new snapshot of the
read-only volume to be propagated to the set of replication sites without Cache Man-
agers becoming aware of the event and marking the appropriate chunks in their caches as
stale. Although the Cache Manager refreshes its volume version information periodically
(once an hour), there is still a window where a Cache Manager will fail to notice that it
has outdated chunks.

The volume synchronization mechanism was defined to close this window, resulting
in what is nearly a “whole-volume” callback device for read-only volumes. Each File
Server RPC interface function handling the transfer of file data is equipped with a
parameter (a_volSyncP), which carries this volume synchronization information. This
parameter is set to a non-zero value by the File Server exclusively when the data being
fetched is coming from a read-only volume. Although the struct AFSVolSync defined
in Section 5.1.2.2 passed via a_volSyncP consists of six longwords, only the first one is
set. This leading longword carries the creation date of the read-only volume. The Cache
Manager immediately compares the synchronization value stored in its cached volume
information against the one just received. If they are identical, then the operation is free
to complete, secure in the knowledge that all the information and files held from that
volume are still current. A mismatch, though, indicates that every file chunk from this
volume is potentially out of date, having come from a previous release of the read-only
volume. In this case, the Cache Manager proceeds to mark every chunk from this volume
as suspect. The next time the Cache Manager considers accessing any of these chunks,
it first checks with the File Server it came from which the chunks were obtained to see
if they are up to date.

2.6 Disposal of Cache Manager Records

Every File Server, when first starting up, will, by default, allocate enough space to record
20,000 callback promises (see Section 5.3 for how to override this default). Should the File
Server fully populate its callback records, it will not allocate more, allowing its memory
image to possibly grow in an unbounded fashion. Rather, the File Server chooses to
break callbacks until it acquires a free record. All reachable Cache Managers respond by
marking their cache entries appropriately, preserving the consistency guarantee. In fact,
a File Server may arbitrarily and unilaterally purge itself of all records associated with

File Server Architecture 13 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

a particular Cache Manager. Such actions will reduce its performance (forcing these
Cache Managers to revalidate items cached from that File Server) without sacrificing
correctness.

File Server Architecture 14 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

Chapter 3

Cache Manager Architecture

3.1 Overview

The AFS Cache Manager is a kernel-resident agent with the following duties and respon-
sibilities:

e Users are to be given the illusion that files stored in the AFS distributed file system
are in fact part of the local UNIX file system of their client machine. There are
several areas in which this illusion is not fully realized:

— Semantics: Full UNIX semantics are not maintained by the set of agents im-
plementing the AFS distributed file system. The largest deviation involves
the time when changes made to a file are seen by others who also have the file
open. In AFS, modifications made to a cached copy of a file are not necessar-
ily reflected immediately to the central copy (the one hosted by File Server
disk storage), and thus to other cache sites. Rather, the changes are only
guaranteed to be visible to others who simultaneously have their own cached

copies open when the modifying process executes a UNIX close() operation on
the file.

This differs from the semantics expected from the single-machine, local UNIX
environment, where writes performed on one open file descriptor are imme-
diately visible to all processes reading the file via their own file descriptors.
Thus, instead of the standard “last writer wins” behavior, users see “last
closer wins” behavior on their AFS files. Incidentally, other DFSs, such as
NF'S, do not implement full UNIX semantics in this case either.

Cache Manager Architecture 15 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref

— Partial failures: A panic experienced by a local, single-machine UNIX file
system will, by definition, cause all local processes to terminate immediately.
On the other hand, any hard or soft failure experienced by a File Server pro-
cess or the machine upon which it is executing does not cause any of the
Cache Managers interacting with it to crash. Rather, the Cache Managers
will now have to reflect their failures in getting responses from the affected
File Server back up to their callers. Network partitions also induce the same
behavior. From the user’s point of view, part of the file system tree has be-
come inaccessible. In addition, certain system calls (e.g., open() and read())
may return unexpected failures to their users. Thus, certain coding practices
that have become common amongst experienced (single-machine) UNIX pro-
grammers (e.g., not checking error codes from operations that “can’t” fail)
cause these programs to misbehave in the face of partial failures.

To support this transparent access paradigm, the Cache Manager proceeds to:

— Intercept all standard UNIX operations directed towards AFS objects, mapping
them to references aimed at the corresponding copies in the local cache.

— Keep a synchronized local cache of AFS files referenced by the client machine’s
users. If the chunks involved in an operation reading data from an object are
either stale or do not exist in the local cache, then they must be fetched from
the File Server(s) on which they reside. This may require a query to the
volume location service in order to locate the place(s) of residence. Authenti-
cation challenges from File Servers needing to verify the caller’s identity are
handled by the Cache Manager, and the chunk is then incorporated into the
cache.

— Upon receipt of a UNIX close, all dirty chunks belonging to the object will be
flushed back to the appropriate File Server.

— Callback deliveries and withdrawals from File Servers must be processed,
keeping the local cache in close synchrony with the state of affairs at the
central store.

e Interfaces are also be provided for those principals who wish to perform AFS-
specific operations, such as Access Control List (ACL) manipulations or changes
to the Cache Manager's configuration.

This chapter takes a tour of the Cache Manager’s architecture, and examines how it
supports these roles and responsibilities. First, the set of AFS agents with which it
must interact are discussed. Next, some of the Cache Manager’'s implementation and
interface choices are examined. Finally, the server’s ability to arbitrarily dispose of
callback information without affecting the correctness of the cache consistency algorithm
is explained.

Cache Manager Architecture 16 August 20, 1991 10:20

AFS-3 FS/CM Programmer’s Ref
3.2 Interactions

The main AFS agent interacting with a Cache Manager is the File Server. The most
common operation performed by the Cache Manager is to act as its users’ agent in
fetching and storing files to and from the centralized repositories. Related to this activity,
a Cache Manager must be prepared to answer queries from a File Server concerning its
health. It must also be able to accept callback revocation notices generated by File
Servers. Since the Cache Manager not only engages in data transfer but must also
determine where the data is located in the first place, it also directs inquiries to Volume
Location Server agents. There must also be an interface allowing direct interactions with
both common and administrative users. Certain AFS-specific operations must be made
available to these parties. In addition, administrative users may desire to dynamically
reconfigure the Cache Manager. For example, information about a newly-created cell
may be added without restarting the client’s machine.

3.3 Implementation Techniques

The above roles and behaviors for the Cache Manager influenced the implementation
choices and methods used to construct it, along with the desire to maximize portability.
This section begins by showing how the VFS/vnode interface, pione